Atomistic folding simulations of the five-helix bundle protein λ(6−85)

Protein folding is a classic grand challenge that is relevant to numerous human diseases, such as protein misfolding diseases like Alzheimer’s disease. Solving the folding problem will ultimately require a combination of theory, simulation, and experiment, with theory and simulation providing an atomically detailed picture of both the thermodynamics and …

Read more

Peptoid conformational free energy landscapes from implicit-solvent molecular simulations in AMBER

To test the accuracy of existing AMBER force field models in predicting peptoid conformation and dynamics, we simulated a set of model peptoid molecules recently examined by Butterfoss et al. (JACS 2009, 131, 16798-16807) using QM methods as well as three peptoid sequences with experimentally determined structures. We found that AMBER force fields, when used w…

Read more

De novo structure prediction and experimental characterization of folded peptoid oligomers

Peptoid molecules are biomimetic oligomers that can fold into unique three-dimensional structures. As part of an effort to advance computational design of folded oligomers, we present blind-structure predictions for three peptoid sequences using a combination of Replica Exchange Molecular Dynamics (REMD) simulation and Quantum Mechanical refinement. We correct…

Read more

Probing antibody internal dynamics with fluorescence anisotropy and molecular dynamics simulations

The solution dynamics of antibodies are critical to antibody function. We explore the internal solution dynamics of antibody molecules through the combination of time-resolved fluorescence anisotropy experiments on IgG1 with more than two microseconds of all-atom molecular dynamics (MD) simulations in explicit water, an order of magnitude more than in previous…

Read more

Computational screening and selection of cyclic peptide hairpin mimetics by molecular simulation and kinetic network models

Designing peptidomimetic compounds to have a preorganized structure in solution is highly nontrivial. To show how simulation-based approaches can help speed this process, we performed an extensive simulation study of designed cyclic peptide mimics of a β-hairpin from bacterial protein LapD involved in a protein-protein interaction (PPI) pertinent to bacte…

Read more

Bayesian inference of conformational state populations from computational models and sparse experimental observables

We present a Bayesian inference approach to estimating conformational state populations from a combination of molecular modeling and sparse experimental data. Unlike alternative approaches, our method is designed for use with small molecules and emphasizes high-resolution structural models, using inferential structure determination with reference potentials, a…

Read more

Microsecond simulations of mdm2 and its complex with p53 yield insight into force field accuracy and conformational dynamics

The p53-MDM2 complex is both a major target for cancer drug development and a valuable model system for computational predictions of protein-ligand binding. To investigate the accuracy of molecular simulations of MDM2 and its complex with p53, we performed a number of long (200 ns to 1 µs) explicit-solvent simulations using a range of force fields. We sy…

Read more

Simulations of the regulatory ACT domain of human phenylalanine hydroxylase (PAH) unveil its mechanism of phenylalanine binding

Phenylalanine hydroxylase (PAH) regulates phenylalanine (Phe) levels in mammals to prevent neurotoxicity resulting from high Phe concentrations as observed in genetic disorders leading to hyperphenylalaninemia and phenylketonuria. PAH senses elevated Phe concentrations by transient allosteric Phe binding to a protein-protein interface between ACT domains of di…

Read more