Finding Our Way in the Dark Proteome

The traditional structure-function paradigm has provided significant insights for well-folded proteins in which structures can be easily and rapidly revealed by X-ray crystallography beamlines. However, approximately one-third of the human proteome is comprised of intrinsically disordered proteins and regions (IDPs/IDRs) that do not adopt a dominant well-folde…

Read more

Optimized parameter selection reveals trends in Markov state models for protein folding

As molecular dynamics simulations access increasingly longer time scales, complementary advances in the analysis of biomolecular time-series data are necessary. Markov state models offer a powerful framework for this analysis by describing a system’s states and the transitions between them. A recently established variational theorem for Markov state models now…

Read more

MSMBuilder: Statistical Models for Biomolecular Dynamics

MSMBuilder is a software package for building statistical models of high-dimensional time-series data. It is designed with a particular focus on the analysis of atomistic simulations of biomolecular dynamics such as protein folding and conformational change. MSMBuilder is named for its ability to construct Markov state models (MSMs), a class of models that has…

Read more

Identification of simple reaction coordinates from complex dynamics

Reaction coordinates are widely used throughout chemical physics to model and understand complex chemical transformations. We introduce a definition of the natural reaction coordinate, suitable for condensed phase and biomolecular systems, as a maximally predictive one-dimensional projection. We then show that this criterion is uniquely satisfied by a dominant…

Read more

Atomistic structural ensemble refinement reveals non-native structure stabilizes a sub-millisecond folding intermediate of CheY

The dynamics of globular proteins can be described in terms of transitions between a folded native state and less-populated intermediates, or excited states, which can play critical roles in both protein folding and function. Excited states are by definition transient species, and therefore are difficult to characterize using current experimental techniques. H…

Read more

Modeling the mechanism of CLN025 beta-hairpin formation

Beta-hairpins are substructures found in proteins that can lend insight into more complex systems. Furthermore, the folding of beta-hairpins is a valuable test case for benchmarking experimental and theoretical methods. Here, we simulate the folding of CLN025, a miniprotein with a beta-hairpin structure, at its experimental melting temperature using a range of…

Read more

A Minimum Variance Clustering Approach Produces Robust and Interpretable Coarse-Grained Models

Markov state models (MSMs) are a powerful framework for the analysis of molecular dynamics data sets, such as protein folding simulations, because of their straightforward construction and statistical rigor. The coarse-graining of MSMs into an interpretable number of macrostates is a crucial step for connecting theoretical results with experimental observables…

Read more

Markov State Models: From an Art to a Science

Markov state models (MSMs) are a powerful framework for analyzing dynamical systems, such as molecular dynamics (MD) simulations, that have gained widespread use over the past several decades. This perspective offers an overview of the MSM field to date, presented for a general audience as a timeline of key developments in the field. We sequentially address ea…

Read more