N-Body simulation on GPUs

Erich Elsen, Mike Houston, V. Vishal, Eric Darve, Pat Hanrahan, and Vijay Pande. Proceedings of the 2006 ACM/IEEE conference on Supercomputing (2006).

SUMMARY. This paper details our first efforts with GPU’s for molecular dynamics. This work lead to the GPU1 FAH core. We have other papers in the works describing the successor to the GPU1 core as well as the PS3 core.

ABSTRACT. Commercial graphics processors (GPUs) have high compute capacity at very low cost, which makes them attractive for general purpose scientific computing. In this poster we show how graphics processors can be used for N-body simulations to obtain large improvements in performance over current generation CPUs. We have developed a highly optimized algorithm for performing the O(N^2) force calculations that constitute the major part of stellar and molecular dynamics simulations. In the calculations, we achieve sustained performance of nearly 100 GFlops on an ATI X1900XTX. The performance on GPUs 25x an Intel Pentium 4, and 2x specialized hardware such as GRAPE-6A, but at a fraction of the cost. Furthermore, the wide availability of GPUs has significant implications for cluster computing and distributed computing efforts like Folding@home.

You can find more information at the DOI for ACM or download the
preprint PDF.