Protein folding is mechanistically robust

Markov state models (MSMs) have proven to be useful tools in simulating large and slowly-relaxing biological systems like proteins. MSMs model proteins through dynamics on a discrete-state energy landscape, allowing molecules to effectively sample large regions of phase space. In this work, we use aspects of MSMs to ask: is protein folding mechanistically robu…

Read more

Slow unfolded-state structuring in Acyl-CoA binding protein folding revealed by simulation and experiment

Protein folding is a fundamental process in biology, key to understanding many human diseases. Experimentally, proteins often appear to fold via simple two- or three-state mechanisms involving mainly native-state interactions, yet recent network models built from atomistic simulations of small proteins suggest the existence of many possible metastable states a…

Read more

Simple few-state models reveal hidden complexity in protein folding

Markov state models constructed from molecular dynamics simulations have recently shown success at modeling protein folding kinetics. Here we introduce two methods, flux PCCA+ (FPCCA+) and sliding constraint rate estimation (SCRE), that allow accurate rate models from protein folding simulations. We apply these techniques to fourteen massive simulation dataset…

Read more

Eigenvalues of the homogeneous finite linear one step master equation: applications to downhill folding

Motivated by the observed time scales in protein systems said to fold “downhill,” we have studied the finite, linear master equation, with uniform rates forward and backward as a model of the downhill process. By solving for the system eigenvalues, we prove the claim that in situations where there is no free energy barrier a transition between single- and mult…

Read more

To milliseconds and beyond: challenges in the simulation of protein folding

Quantitatively accurate all-atom molecular dynamics (MD) simulations of protein folding have long been considered a holy grail of computational biology. Due to the large system sizes and long timescales involved, such a pursuit was for many years computationally intractable. Further, sufficiently accurate forcefields needed to be developed in order to realisti…

Read more

Derivation and assessment of phase-shifted, disordered vector field models for frustrated solvent interactions

The structure and properties of water at biological interfaces differ drastically from bulk due to effects including confinement and the presence of complicated charge distributions. This non-bulk-like behavior generally arises from water frustration, wherein all favorable interactions among water molecules cannot be simultaneously satisfied. While the frustra…

Read more

Improvements in Markov State Model Construction Reveal Many Non-Native Interactions in the Folding of NTL9

Markov State Models (MSMs) provide an automated framework to investigate the dynamical properties of high-dimensional molecular simulations. These models can provide a human-comprehensible picture of the underlying process, and have been successfully used to study protein folding, protein aggregation, protein ligand binding, and other biophysical systems. The …

Read more

Inclusion of persistence length-based secondary structure in replica field theoretic models of heteropolymer freezing

The protein folding problem has long represented a “holy grail” in statistical physics due to its physical complexity and its relevance to many human diseases. While past theoretical work has yielded apt descriptions of protein folding landscapes, recent large-scale simulations have provided insights into protein folding that were impractical to obtain from ea…

Read more