The protein folding problem: when will it be solved?

The protein folding problem can be viewed as three different problems: defining the thermodynamic folding code; devising a good computational structure prediction algorithm; and answering Levinthal’s question regarding the kinetic mechanism of how proteins can fold so quickly. Once regarded as a grand challenge, protein folding has seen much progress in recent…

Read more

Probing the nanosecond dynamics of a designed three-stranded beta-sheet with a massively parallel molecular dynamics simulation

Recently a temperature-jump FTIR study of a designed three-stranded sheet showing a fast relaxation time of approximately 140 +/- 20 ns was published. We performed massively parallel molecular dynamics simulations in explicit solvent to probe the structural events involved in this relaxation. While our simulations produce similar relaxation rates, the structur…

Read more

Unfolded-state dynamics and structure of protein L characterized by simulation and experiment

While several experimental techniques now exist for characterizing protein unfolded states, all-atom simulation of unfolded states has been challenging due to the long time scales and conformational sampling required. We address this problem by using a combination of accelerated calculations on graphics processor units and distributed computing to simulate ten…

Read more

Atomistic folding simulations of the five-helix bundle protein λ(6−85)

Protein folding is a classic grand challenge that is relevant to numerous human diseases, such as protein misfolding diseases like Alzheimer’s disease. Solving the folding problem will ultimately require a combination of theory, simulation, and experiment, with theory and simulation providing an atomically detailed picture of both the thermodynamics and …

Read more

Peptoid conformational free energy landscapes from implicit-solvent molecular simulations in AMBER

To test the accuracy of existing AMBER force field models in predicting peptoid conformation and dynamics, we simulated a set of model peptoid molecules recently examined by Butterfoss et al. (JACS 2009, 131, 16798-16807) using QM methods as well as three peptoid sequences with experimentally determined structures. We found that AMBER force fields, when used w…

Read more

De novo structure prediction and experimental characterization of folded peptoid oligomers

Peptoid molecules are biomimetic oligomers that can fold into unique three-dimensional structures. As part of an effort to advance computational design of folded oligomers, we present blind-structure predictions for three peptoid sequences using a combination of Replica Exchange Molecular Dynamics (REMD) simulation and Quantum Mechanical refinement. We correct…

Read more

Probing antibody internal dynamics with fluorescence anisotropy and molecular dynamics simulations

The solution dynamics of antibodies are critical to antibody function. We explore the internal solution dynamics of antibody molecules through the combination of time-resolved fluorescence anisotropy experiments on IgG1 with more than two microseconds of all-atom molecular dynamics (MD) simulations in explicit water, an order of magnitude more than in previous…

Read more

Computational screening and selection of cyclic peptide hairpin mimetics by molecular simulation and kinetic network models

Designing peptidomimetic compounds to have a preorganized structure in solution is highly nontrivial. To show how simulation-based approaches can help speed this process, we performed an extensive simulation study of designed cyclic peptide mimics of a β-hairpin from bacterial protein LapD involved in a protein-protein interaction (PPI) pertinent to bacte…

Read more