Percolation-like phase transitions in network models of protein dynamics

In broad terms, percolation theory describes the conditions under which clusters of nodes are fully connected in a random network. A percolation phase transition occurs when, as edges are added to a network, its largest connected cluster abruptly jumps from insignificance to complete dominance. In this article, we apply percolation theory to meticulously const…

Read more

A network of molecular switches controls the activation of the two-component response regulator NtrC

Recent successes in simulating protein structure and folding dynamics have demonstrated the power of molecular dynamics to predict the long timescale behaviour of proteins. Here, we extend and improve these methods to predict molecular switches that characterize conformational change pathways between the active and inactive state of nitrogen regulatory protein…

Read more

Modeling molecular kinetics with tICA and the kernel trick

The allure of a molecular dynamics simulation is that, given a sufficiently accurate force field, it can provide an atomic-level view of many interesting phenomena in biology. However, the result of a simulation is a large, high-dimensional time series that is difficult to interpret. Recent work has introduced the time-structure based Independent Components An…

Read more

Learning Kinetic Distance Metrics for Markov State Models of Protein Conformational Dynamics

Statistical modeling of long timescale dynamics with Markov state models (MSMs) has been shown to be an effective strategy for building quantitative and qualitative insight into protein folding processes. Existing methodologies, however, rely on geometric clustering using distance metrics such as root mean square deviation (RMSD), assuming that geometric simil…

Read more

Conformational heterogeneity of the calmodulin binding interface

Calmodulin (CaM) is a ubiquitous Ca(2+) sensor and a crucial signalling hub in many pathways aberrantly activated in disease. However, the mechanistic basis of its ability to bind diverse signalling molecules including G-protein-coupled receptors, ion channels and kinases remains poorly understood. Here we harness the high resolution of molecular dynamics simu…

Read more

Finding Our Way in the Dark Proteome

The traditional structure-function paradigm has provided significant insights for well-folded proteins in which structures can be easily and rapidly revealed by X-ray crystallography beamlines. However, approximately one-third of the human proteome is comprised of intrinsically disordered proteins and regions (IDPs/IDRs) that do not adopt a dominant well-folde…

Read more

Optimized parameter selection reveals trends in Markov state models for protein folding

As molecular dynamics simulations access increasingly longer time scales, complementary advances in the analysis of biomolecular time-series data are necessary. Markov state models offer a powerful framework for this analysis by describing a system’s states and the transitions between them. A recently established variational theorem for Markov state models now…

Read more