Stefan M. Larson, Christopher D. Snow, Michael R. Shirts, and Vijay S. Pande. To appear in Computational Genomics, Richard Grant, editor, Horizon Press, (2002)
ABSTRACT: For decades, researchers have been applying computer simulation to address problems in biology. However, many of these grand challenges in computational biology, such as simulating how proteins fold, remained unsolved due to their great complexity. Indeed, even to simulate the fastest folding protein would require decades on the fastest modern CPUs. Here, we review novel methods to fundamentally speed such previously intractable problems using a new computational paradigm: distributed computing. By efficiently harnessing tens of thousands of computers throughout the world, we have been able to break previous computational barriers. However, distributed computing brings new challenges, such as how to efficiently divide a complex calculation of many PCs that are connected by relatively slow networking. Moreover, even if the challenge of accurately reproducing reality can be conquered, a new challenge emerges: how can we take the results of these simulations (typically tens to hundreds of gigabytes of raw data) and gain some insight into the questions at hand. This challenge of the analysis of the sea of data resulting from large-scale simulation will likely remain for decades to come.