Fluctuations within folded proteins: implications for thermodynamic and allosteric regulation

Acc Chem Res. 2015 Apr 21;48(4):1098-105. doi: 10.1021/ar500351b. Epub 2015 Feb 17.

ABSTRACT

Folded protein structures are both stable and dynamic. Historically, our clearest window into these structures came from X-ray crystallography, which generally provided a static image of each protein’s singular “folded state”, highlighting its stability. Deviations away from that crystallographic structure were difficult to quantify, and as a result, their potential functional consequences were often neglected. However, several dynamical and statistical studies now highlight the structural variability that is present within the protein’s folded state. Here we review mounting evidence of the importance of these structural rearrangements; both experiment and computation indicate that folded proteins undergo substantial fluctuations that can greatly influence their function. Crucially, recent studies have shown that structural elements of proteins, especially their side-chain degrees of freedom, fluctuate in ways that generate significant conformational heterogeneity. The entropy associated with these motions contributes to the folded structure’s thermodynamic stability. In addition, since these fluctuations can shift in response to perturbations such as ligand binding, they may play an important role in the protein’s capacity to respond to environmental cues. In one compelling example, the entropy associated with side-chain fluctuations contributes significantly to regulating the binding of calmodulin to a set of peptide ligands. The neglect of fluctuations within proteins’ native states was often justified by the dense packing within folded proteins, which has inspired comparisons with crystalline solids. Many liquids, however, can achieve similarly dense packing yet fluidity is maintained through correlated molecular motions. Indeed, the studies we discuss favor comparison of folded proteins not with solids but instead with dense liquids, where the internal side chain fluidity is facilitated by collective motions that are correlated over long distances. These correlated rearrangements can enable allosteric communication between different parts of a protein, through subtle and varied channels. Such long-range correlations appear to be an innate feature of proteins in general, manifest even in molecules lacking known allosteric regulators and arising robustly from the physical nature of their internal environment. Given their ubiquity, it is only to be expected that, over time, nature has refined some subset of these correlated motions and put them to use. Native state fluctuations increasingly appear to be vital for proteins’ natural functions. Understanding the diversity, origin, and range of these rearrangements may provide novel routes for rationally manipulating biomolecular activity.

PMID:25688669 | DOI:10.1021/ar500351b