Simulation of spontaneous G protein activation reveals a new intermediate driving GDP unbinding.

Icon for eLife Sciences Publications, Ltd Related Articles

Simulation of spontaneous G protein activation reveals a new intermediate driving GDP unbinding.

Elife. 2018 Oct 05;7:

Authors: Sun X, Singh S, Blumer K, Bowman GR

Abstract
Activation of heterotrimeric G proteins is a key step in many signaling cascades. However, a complete mechanism for this process, which requires allosteric communication between binding sites that are ~30 Å apart, remains elusive. We construct an atomically-detailed model of G protein activation by combining three powerful computational methods: metadynamics, Markov state models (MSMs), and CARDS analysis of correlated motions. We uncover a mechanism that is consistent with a wide variety of structural and biochemical data. Surprisingly, the rate-limiting step for GDP release correlates with tilting rather than translation of the GPCR-binding helix 5. β-Strands 1-3 and helix 1 emerge as hubs in the allosteric network that links conformational changes in the GPCR-binding site to disordering of the distal nucleotide-binding site and consequent GDP release. Our approach and insights provide foundations for understanding disease-implicated G protein mutants, illuminating slow events in allosteric networks, and examining unbinding processes with slow off-rates.

PMID: 30289386 [PubMed – as supplied by publisher]