Precisely tuneable energy transfer system using peptoid helix-based molecular scaffold.

Icon for Nature Publishing Group Icon for PubMed Central Related Articles

Precisely tuneable energy transfer system using peptoid helix-based molecular scaffold.

Sci Rep. 2017 Jul 06;7(1):4786

Authors: Kang B, Yang W, Lee S, Mukherjee S, Forstater J, Kim H, Goh B, Kim TY, Voelz VA, Pang Y, Seo J

Abstract
The energy flow during natural photosynthesis is controlled by maintaining the spatial arrangement of pigments, employing helices as scaffolds. In this study, we have developed porphyrin-peptoid (pigment-helix) conjugates (PPCs) that can modulate the donor-acceptor energy transfer efficiency with exceptional precision by controlling the relative distance and orientation of the two pigments. Five donor-acceptor molecular dyads were constructed using zinc porphyrin and free base porphyrin (Zn(i + 2)-Zn(i + 6)), and highly efficient energy transfer was demonstrated with estimated efficiencies ranging from 92% to 96% measured by static fluorescence emission in CH2Cl2 and from 96.3% to 97.6% using femtosecond transient absorption measurements in toluene, depending on the relative spatial arrangement of the donor-acceptor pairs. Our results suggest that the remarkable precision and tunability exhibited by nature can be achieved by mimicking the design principles of natural photosynthetic proteins.

PMID: 28684782 [PubMed – in process]